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Abstract 

The purpose of this research was to continue a study of gas-dynamic phenomena 

that occurred in stacked cylindrical rings of nozzles and an exhaust manifold as reported 

by Captain Scott Bergren in 2002.   The rings and exhaust manifold were part of a 1/5-

scale model of one quadrant of the conceptual Space Based Laser Integrated Flight 

Experiment (SBL IFX) gas dynamic laser.  This model was mated to a blow-

down/vacuum wind tunnel and consisted of a nozzle array, centerbody, supersonic 

diffuser, and a transition structure to mate the vacuum and test section.  During Capt 

Bergren’s research, supersonic flow was found to only last for 0.2 seconds from wind 

tunnel startup.  The short duration of the supersonic flow was due to the transition 

structure being too small and not being able to “swallow” the shock wave.   

The objectives of this research were to remodel the transition structure and 

evaluate the test section to see if simulation of the expected fluid flow properties in the 

conceptual SBL IFX design was possible using cold-flow.  The transition structure was 

remodeled to capture the entire vacuum line entrance area while still mating to the 

diffuser exit.  Using rapid data acquisition and schlieren photography, results indicated 

that supersonic flow lasted for approximately 10 seconds from startup.  During this time, 

a well-defined oblique shock wave inside the optical cavity attached to the leading edge 

of the centerbody, where the flow reached a velocity of Mach 2.8.   
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COLD-FLOW TESTING OF A SUBSCALE MODEL EXHAUST SYSTEM FOR A 
SPACE-BASED LASER 

 

I. Introduction 
 

Background 

 Lasers have been tested as an effective weapon against missiles since 1973.  

During that time, the Mid Infrared Advanced Chemical Laser (MIRACL) was developed 

and first tested against tactical missiles and drone aircraft (Federation, 2002).  This laser 

weapon concept is currently pursued with the Airborne Laser Program (ABL), which fits 

a Chemical Oxygen Iodine Laser (COIL) into a Boeing 747 aircraft.  Its objective is to 

destroy ballistic missiles during the boost phase of their flight.   

The Space-Based Laser Integrated Flight Experiment (SBL IFX) planned to build 

on this concept to investigate the possibility of placing gas dynamic lasers (GDL) in 

space to accomplish the same objective through space rather than aircraft.  The SBL-IFX 

program was funded by both the U. S. Air Force and the Ballistic Missile Defense 

Organization (BMDO).  The contract was with three partners consisting of The Boeing 

Company, Lockheed-Martin Corporation, and TRW, Inc.  The SBL-IFX program aims to 

provide a means of improving beam quality and phasing of multiple chemical laser gain 

generators, to demonstrate the capability of a hydrogen fluoride (HF) laser, and to 

integrate the components of an SBL into a ground experiment to demonstrate operation 

of the high power elements of a space-based laser.  The internal fluid dynamics 

associated with this high power gas dynamic laser are the focus of this study. 

 The power generated in the SBL IFX is a result of an exothermic reaction of 

hydrogen and dissociated fluorine.  An array of nozzles accelerates the fluorine 
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molecules supersonically.  Molecular hydrogen is then injected into the supersonic 

expansion inside the divergent section of the nozzle to enable good mixing and efficient 

reaction with the fluorine to produce the vibrationally inverted HF molecules required for 

lasing.  The need for supersonic flow here is three fold:  

1.  The chemical reaction needs to occur quickly for lasing to occur, since the faster the 

mixing time the quicker the chemical reaction. 

2.  High temperatures destroy the lasing process and isentropic, supersonic expansion is a 

way to produce low temperatures conducive for lasing.  

3.  Faster fluid allows more power to be extracted from the fluid flow (Perram, 1999). 

The subsequent optical energy inside the lasing cavity is then extracted from the 

supersonic flow.  The gain generation assembly can achieve higher power by simply 

stacking more rings.   

The quality of the laser beam is highly dependent on the flow characteristics 

within the lasing cavity.  Low density, pressure and temperature are all needed for a high 

quality beam.  A low density reduces the deactivation of excited HF molecules, and a low 

pressure is better for molecular diffusion.  Also, a low temperature allows for better laser 

inversion which results in a higher gain.  A high Mach number is consistent with all of 

these effects, and is therefore desired at the nozzle exit plane and throughout the lasing 

cavity.  Shock waves and boundary layer separation, however, are sources of beam 

distortion and result in less energy that may be drawn from the flow.  Therefore, flow 

homogeneity is strongly desired inside the lasing cavity (Lohn, 2001).  
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Problem Statement 

TRW was responsible for the power generation portion of the SBL IFX.  This 

segment of the SBL IFX is where the population inversion occurs causing the initial 

lasing.  Currently, TRW has designed a nozzle array and diffuser that will theoretically 

create a laser in the megawatt class.  Two-dimensional, computational fluid dynamics 

(CFD) by TRW has yielded preliminary results for the performance of the proposed 

design. 

 Experimental data is desired to verify these CFD results.  The current cold-flow 

subscale model of the proposed design can be redesigned to simulate the flow 

characteristics of the computational results.  Once this is accomplished, the flow 

characteristics of the model can be examined to determine the effectiveness of a full scale 

laser.  

Objectives 
 

This research effort has two major objectives: 

1.  The previous test facility was a one-fifth scale, 90 deg segment of the proposed TRW 

laser generator.  The first objective was to remodel the previous test facility so that it 

would be capable of investigating flow conditions in a simulated laser nozzle 

assembly and lasing cavity using cold-flow.  The facility was designed to be modular 

for the purposes of testing various geometries.  The first objective was accomplished 

by redesigning the transition structure mating the model to the existing blow-down 

wind tunnel.  The previous transition structure contained a rectangular exit area and 

mated to a circular vacuum line entrance.  Nearly two-thirds of the vacuum line 
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entrance area was lost by using the rectangular exit for the transition structure.  By 

mating the circular vacuum line with a circular transition exit, most of the diffuser 

cross-sectional area was recovered.  This will be explained in further detail in Chapter 

3. 

2.  The second objective was to examine the flow properties of the scaled nozzle/diffuser 

system using time based pressure measurements and schlieren photography.  

Experimental data from this facility can then be compared to the CFD results from 

TRW.  The second objective was accomplished using a rapid data acquisition system 

to obtain static pressure readings at various locations and a basic schlieren 

photography setup for visual analysis of the flow including shock waves and areas of 

separation.   

Summary of Current Knowledge 
 

Current knowledge of gas dynamic lasers has matured through the development 

of the Alpha High Energy Laser.  Because the design of the MIRACL was intended for 

sea level operation, it did not achieve the optimum efficiency necessary for space-based 

operation.  Therefore, the Defense Advanced Research Projects Agency (DARPA) 

launched the Alpha laser program, with the goal of developing a megawatt level SBL that 

was scaleable to more powerful weapon levels and optimized for space operation.  Like 

the SBL IFX proposed laser design, the Alpha laser also contained stacked cylindrical 

rings of nozzles used for reactant mixing.  In 1991, the Alpha laser demonstrated 

megawatt class power levels similar to MIRACL, but in a low pressure, space operation 

environment.  This demonstrated that multi-megawatt, space-compatible lasers could be 

built and operated (Federation, 2002; Greenwald, 2000). 
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In the study conducted by Captain Scott Bergren which preceded this research, 

the 1/5-scale model was fabricated and mated to a blow-down/vacuum combination wind 

tunnel.  The primary components of the test apparatus consisted of a nozzle array, optical 

cavity, supersonic diffuser, centerbody, and transition section.  The throat height of a 

single nozzle was 1 mm and the expansion ratio was two.  A transition structure was 

designed to attach the subscale model to the wind tunnel facility vacuum line and was not 

part of the SBL IFX design (Bergren, 2002).   

Using rapid data acquisition and schlieren photography, the fluid velocities in the 

diffuser were determined to become subsonic after a transient time interval of 0.2 seconds 

from wind tunnel startup for a 30 second long test.  During this transient time interval, a 

well-defined, attached oblique shock wave was observed off the leading edge of the 

centerbody within the optical cavity of the diffuser, and the fluid in the optical cavity 

reached an observed maximum Mach number of 2.7 (Bergren, 2002).   

The flow characteristics observed during the transient time period are very 

conducive to high beam quality, but the 0.2 second duration is far too brief for lasing 

activity.  The short duration can be attributed to the exit area of the transition structure, 

which was too small to “swallow” the normal shock that propagated down the length of 

the test section (Bergren, 2002). 

 TRW has performed computer modeling for two-dimensional flow and the results 

exhibited lasing cavity boundary layer separation sensitive to small changes in back 

pressure.  Furthermore, the results showed the lasing cavity free of shock waves and 

interactions which would degrade lasing performance.   
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Method 
 
 In order to accomplish the first objective, the transition structure of the test 

facility required re-designing.  The following questions needed to be answered: 

1) What design/shape should the structure be to obtain the most exit area at the 

vacuum line entrance? 

2) Where should the transition section mate to the vacuum line? 

Once the transition structure had been built and connected to the test section and 

vacuum line, the following general method was used to obtain the necessary data to 

complete the research’s objectives. 

1) Run the wind tunnel with pressure transducers at different locations 

throughout the length of the diffuser 

2) Obtain schlieren images inside the optical cavity and farther back above the 

centerbody 

3) Record wall static pressure at transducer locations 

4) Calculate Mach numbers using schlieren images and pressure readings 

5) Observe shock patterns in both schlieren locations 

This thesis is organized to allow the reader to understand why certain design 

decisions were made to remodel the first test facility for the SBL IFX and what 

procedures and equipment were used throughout the experimentation.  The theory chapter 

explains the fundamentals of compressible gas dynamics and turbulent jets, which is 

needed to understand the flow field inside the lasing cavity and diffuser.   
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The Methodology chapter explains the procedures and equipment used, and how 

one could duplicate the experiment to reach the same results.  Discussion is given as to 

why certain procedures were used to accomplish different tasks. 

The Results chapter presents and discusses the data collected from the 

experiments.  These are presented in mainly in graphs and pictures, so that the reader 

may visually understand trends in the flow.  

Lastly, a Conclusions and Recommendations chapter closes the thesis by 

explaining the relevance and applications for the findings documented in this study.  

Additionally, as the section title suggests, recommendations are made as to what paths 

future endeavors in this work should follow to achieve more in-depth results with 

possibly higher accuracy. 
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II. Theory 
 

Quasi-One-Dimensional-Flow 
 
 The distinction between one-dimensional flow and quasi-one dimensional flow is 

that one-dimensional flow is treated as strictly constant-area flow, where as quasi-one-

dimensional flow allows the cross-sectional area to vary with distance x, as seen in 

Figure 2.1.  This is the type of flow which will be analyzed in the supersonic nozzle 

array. 

Flow x

A = constant

One-dimensional flow

Flow

A = A(x)

Quasi-one-dimensional flow

x

 

Figure 2.1 Comparison of One-Dimensional and Quasi-One-Dimensional Flows 

 The mass flow of a thermally and calorically perfect gas through a choked 

supersonic nozzle is given in terms of stagnation properties by 

( ) ( )1/1
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0
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−+
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γγ

γ
γ
RT
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m     (1) 

      

where the Mach number at the throat is known to be unity (Anderson, 1990:184). 

 Assuming steady flow, conservation of mass can be used to find the instantaneous 

Mach number at any cross-section.  Once the static properties and area are known at a 

certain location, a simple derivation of AVm ρ=
•

and a transformation of velocity to 

Mach number gives 
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pAa
RTmM

•

=                                                                  (2)                              

where a is the speed of sound and represented as RTγ for a perfect gas and A is the 

cross-sectional area at the pressure transducer location (Anderson, 1990). 

 Mach number can also found using pressure relationships from isentropic flow 

properties.  If both total and static pressure are known at a certain location, then Mach 

number can be calculated.  This is especially helpful when calculating Mach number at 

the exit plane of a supersonic nozzle.   
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Oblique Shock Waves 
 
 The geometry of an oblique shock wave is shown in Figure 2.2 below. 

θ
V1, M1

w1, M
t1 u

1, M
n1

u
2, M

n2

w2, M
t2

V2, M2

β

Oblique Shock
1 2

 
 

Figure 2.2 Oblique Shock Wave Geometry 
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The velocity and corresponding Mach number upstream and horizontal to the oblique 

shock are known as V1 and M1, respectively.  A deflection angle, θ, behind the shock 

turns the flow parallel to the angle.  This velocity and corresponding Mach number are 

known as V2 and M2, respectively.   The oblique shock makes a wave angle, β, due to the 

turning of the flow.  The components of V1 perpendicular and parallel, respectively, to the 

shock are u1 and w1; the analogous components of V2 are u2 and w2, as shown in Figure 

2.2.  Therefore, we can consider the normal and tangential Mach numbers ahead of the 

shock to be Mn1 and Mt1, respectively; similarly, we have Mn2 and Mt2 behind the shock.  

The tangential component of the flow velocity is preserved across the oblique shock 

wave (Anderson, 1990:104).   

 The Mach number in region 1 can be derived from a known deflection and wave 

angle.  This relationship, otherwise known as the θ−β-M relation, is shown in the 

equation below. 

( ) 







++

−
=

22cos
1sin

cot2tan 2
1

22
1

βγ
β

βθ
M

M     (4) 

These results are well published and often plotted for a wide range of wave angles versus 

deflection angles with Mach number as a parameter.  These relations are vital to an 

analysis of oblique shocks, and the following should be noted (Anderson, 1990:107):  

1.  For any given M1, there is a maximum deflection angle θmax.  If θ > θmax, then no 

solution exists for a straight oblique shock wave.  Instead, the shock will be curved 

and detached. 

2.  For any given θ < θmax, there are two values of β predicted by the θ−β-M relation for a 

given Mach number.  Because changes across the shock are more severe as β 
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increases, the large value of β is called the strong shock solution.  The small value of 

β is called the weak shock solution.  In nature, the weak shock solution is favored, 

and usually occurs. 

3.  If θ = 0, then β = π/2 (corresponding to a normal shock) or β = µ (corresponding to a 

Mach wave), where 
M
1sin 1−=µ . 

4.  For a fixed deflection angle θ, as the free-stream Mach number decreases from high to 

low supersonic values, the wave angle increases. 

 After the upstream Mach number is established, the normal component can be 

found using 

βsin11
MM n =      (5) 

With the normal component of the upstream Mach number, normal shock relations can be 

used to find properties such as static pressure behind the oblique shock wave.   
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This equation shows that the pressure of a fluid will rise as supersonic flow passes 

through a stationary shock wave. 

Mach number behind the wave is also found using the normal velocity component 

upstream. 
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Once the normal velocity is found, the total Mach number behind the shock wave is 

calculated using 



2-5 

)sin(
2

2 θβ −
= nM

M      (8) 

Prandtl-Meyer Expansion Waves 
 
 An expansion wave is formed when supersonic flow is turned away from itself.  

This action is directly opposite of an oblique shock wave where the flow is turned into 

itself as explained above.  Some qualitative aspects of flow through an expansion wave 

are itemized as follows (Anderson, 1990:131): 

1.  An expansion corner is a means to increase the flow Mach number. 

2.  The pressure, density, and temperature decrease through an expansion wave. 

3.  The expansion fan itself is a continuous expansion region, composed of an infinite 

number of Mach waves, bounded upstream by µ1 and downstream by µ2 (see Figure 

2.3), where µ1 = arcsin(1/M1) and µ2 = arcsin(1/M2). 

4.  Streamlines through an expansion wave are smooth curved lines. 

5.  Since the expansion takes place through a continuous succession of Mach waves, and 

ds = 0 (change in entropy) for each Mach wave, the expansion in isentropic. 
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Figure 2.3 Prandtl-Meyer Expansion Wave 
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 The equations involved in calculating the properties before and after the 

expansion wave are relatively simple.  First ν(M1), known as the Prandtl-Meyer function, 

is found by using 

1tan)1(
1
1tan

1
1)( 2121 −−−

−
+

−
+

= −− MMM
γ
γ

γ
γν   (9) 

Once ν is know for M1, the Prandtl-Meyer function corresponding to M1 is found using 

 )()( 122 MM νθν +=      (10) 

The Mach number in region 2 can then be backed out using Eq. 9.  Mach number 

corresponding to Prandtl-Meyer function is tabulated and well published.  If the static 

pressure is known in region 1, the pressure in region 2 is calculated with 
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As stated earlier, expansion waves are isentropic, and therefore, total pressure remains 

the same in regions 1 and 2 (Anderson, 1990:134-135). 

Reynolds Number 

The Reynolds number is one of the most important dimensionless parameters in 

fluid flow.  This number can be derived in physical terms by considering only the 

physical dimensions of those properties that determine the ratio of the inertia to the 

viscous forces on a volume of fluid (Kuethe and Chow, 1998:364).    

Consider, for example, incompressible 2-D steady flow in a boundary layer of 

thickness δ; the equations governing this flow are reduced from the full Navier-Stokes 

equations and are shown in Eqs. (12) and (13). 



2-7 









∂
∂

+
∂
∂

=+
∂
∂

+
∂
∂

2

2

2

21
y
u

x
uv

dx
dp

y
u

x
uu

ρ
υ     (12) 









∂
∂

+
∂
∂

=+
∂
∂

+
∂
∂

2

2

2

21
yx

v
dx
dp

yx
u υυ

ρ
υυυ    (13) 

The inertia forces, those on the left sides, 
y
u

∂
∂υ , and so forth, have the dimensional form 

δ

2V  

where V is the freestream velocity outside the boundary layer.  The viscous forces, 

expressed on the right side, 2

2

y
uv

∂
∂ , and so forth, have the dimensional form 

2δ
vV  

Therefore, the ratio of the inertia forces to the viscous forces becomes 

v
Vδ

δ =Re      (14) 

termed the boundary layer Reynolds number.  If Reδ is small, the viscous forces dominate 

the inertia forces, and vice versa.  The length δ in Eq. (14) is simply a characteristic 

length, and is chosen to describe a particular flow or an aspect of the flow.  For flow past 

wings, the chord is generally chosen, although the use of Reynolds number to compare 

flows implies that they are geometrically similar (Kuethe and Chow, 1998:364-365).    
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Compressible Turbulent Jets 
 
 Figure 2.4 shows the details of the initial formation of a jet, assuming a still 

ambient fluid. 

Mixing
layers

Jet
source

Shear  Layers

Potential
core

Uexit

b

Umax

End of
core

Developing
Flow

Self-
preserving
flow

 
Figure 2.4 Early Development of a Turbulent Jet 

Velocity profiles are shown as thick dark lines across the flow.  Typically the jet issues as 

a nearly flat, fully developed turbulent velocity Uexit.  Mixing or shear layers form at the 

lip of the exit growing between the still ambient fluid, and the nearly inviscid potential 

core flowing at velocity Uexit.  The potential core vanishes quickly, at a distance of about 

one diameter from the exit, where the velocity profile loses its mixing-layer-flat-core 

shape.  Down stream of the core, the flow begins to develop into the distinctive Gaussian-

type shape we think of as a jet.  Finally, about 20 diameters downstream of the exit, the 

velocity profile reaches and sustains a self preserving shape (White, 1991:471).   

 The jet or nozzle exit plane and external pressures are critical in analyzing the 

behavior of a particular turbulent jet.  Shock waves or expansion fans may appear within 

the jet as dictated by the external environment. If the exit pressure of a nozzle is below 
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that of the external environment outside the exit plane, the nozzle is operating off-design 

and is overexpanded.  If it is above the external pressure, then it is underexpanded.  In the 

case where the exit plane pressure matches exactly with the external pressure, the nozzle 

is perfectly expanded (Bergren, 2002:2-6).     

 
Figure 2.5 Underexpanded Jet 

Figure 2.5 illustrates the actions of an underexpanded jet.  As stated above, 

underexpansion occurs when the exit plane pressure is greater than the atmospheric 

pressure.  This causes the jet boundary to balloon out after leaving the nozzle exit, as seen 

in Figure 2.5.  Expansion waves occur since the flow is turning away from itself at the 

exit.  These waves intersect each other, reflect off the jet boundary as compression 

waves, and intersect again to form the well understood shock diamond geometry.   

Conversely, Figure 2.6 demonstrates the actions of an overexpanded jet.  This 

occurs when the exit pressure is less than the atmospheric pressure.  The jet boundary 

turns in at the exit causing the flow to turn into itself.  Consequently, compression waves 

form to slow the flow down.  These compression waves intersect, reflect off the 

boundaries as expansion waves, and form diamonds.   
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Figure 2.6 Overexpanded Jet 

A nozzle array is merely a grouping of the individual nozzles discussed above.  

The individual jets that are formed interact with each other creating a complex flow field 

of interacting shear layers, compression and expansion waves, and turbulent mixing.  

Furthermore, as the nozzles operate at various ambient pressures, the jet interaction 

changes the changing flow structures (Bergren, 2002:2-9). 

 Figure 2.7 illustrates both the over and underexpanded cases for a nozzle array.  

As stated before, an overexpanded nozzle turns in at the exit plane.  Therefore, little 

interaction occurs between the individual jets.  The base region is very large and extends 

far downstream until complete mixing occurs.  Conversely, when the nozzles are 

underexpanded, the plumes are much wider, and the individual jets interact almost 

immediately outside the exit.  The base region is very small, and is isolated by the 

intersecting plumes.  According to experiments, the nozzle base pressure has been proven 

to be significantly higher than the atmospheric pressure (Bjurstrom, 1984).  This is 

consistent with Goethert’s early work with non-two-dimensional nozzles.  “This pressure 

difference is necessary since otherwise the exhaust gases in the mixing zone of the jet 

boundaries could not penetrate downstream into the high pressure area behind the 

intersections of the jets” (Goethert, 1959).  As the base pressure rises, the jet can go from 
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being underexpanded to being overexpanded when the base pressure becomes greater 

than the exit pressure.  After this occurs, the plumes reduce in size, exposing the base 

region to the atmospheric pressure. 

 
 Figure 2.7 A Nozzle Cluster Operating Off-Design (Bjurstrom, 1984:24) 
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III. Methodology 
 

Test Section 
 
 The test section was designed to certain criteria stated by the United States Air 

Force SBL IFX program office and TRW, Inc.  These criteria are stated below (Bergren, 

2002:2-4): 

1.  One quadrant or 90 deg arc of the nozzle stack and Exhaust Manifold Assembly 

(EMA) be modeled. 

2.  The flow at the nozzle exit plane be greater than Mach 1.2. 

3.  The ten-nozzle array consist of nine full nozzles and a half nozzle on each end. 

4.  The nozzles have a half angle of approximately 15 degrees. 

A single quadrant of the SBL IFX is shown Figure 3.1.  The nozzle array, center 

body, diffuser, and lasing cavity are together known as the Exhaust Manifold Assembly 

(EMA). These components were all modeled in the test section.  

 

 
 
 
 
 
 
 

 
 

Figure 3.1 Cross-Sectional View of One Quadrant of the SBL IFX 
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Model Scaling. 

 The test section was scaled appropriately from the conceptual SBL IFX to fit the 

confines of the AFIT test facility.  Also, cold flow (air) was used in the test section rather 

than the chemical fluid used in the conceptual design.  The Reynolds number was the 

main focus in determining the scale of the model.  Although the test section was scaled 

down in size, a close match in Reynolds number between the real and modeled flow was 

desired.  This would make the model and the full structure dynamically similar (Sleigh, 

2001).  A 1/5th scale was concluded to be appropriate for this research.  This allowed the 

test section to be large enough to overcome viscous effects from walls, yet small enough 

to fit within the testing facility.   

Nozzle Array. 
 
 Figure 3.2 is a computer-generated model of the 1/5th scale nozzle array with 

hardware attachment points.   

 

Figure 3.2 Nozzle Array Model (Bergren, 2002) 

There are a few notable differences between the scaled nozzle array and the SBL IFX.  

One is that hydrogen was not injected into the flow as it exited the nozzles during testing.  
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Also air was accelerated through the nozzles instead of fluorine molecules and no lasing 

occurred at the nozzle exit.  However, the main objective when designing the scaled 

nozzles was not to achieve similar fluid properties, but rather to produce similar Mach 

numbers at the exit plane.  Using a 1/5th scale, the cross-section of the nozzle array is 

shown in Figure 3.3 and a summary of the measurements is shown in Table 3.1. 

 
 

 
 
 
 
 
 
 
 

 
Figure 3.3 Cross-Section A-A of Nozzle Array (Bergren, 2002) 

 
 

Table 3.1 Dimensions for Single Nozzle (Bergren, 2002) 
 

 Nomenclature Dimension 
a Base 4.6 mm  
b Exit Width 1.98 mm  
c Throat Width 1 mm  
d Half-Angle 15 deg 

 
Losses were expected due to viscous effects from the nozzle walls.  These effects could 

have been minimized by contouring the nozzle walls, but this was not feasible due to the 

small size.  The losses due to the walls were needed in designing the exit velocity of the 

nozzle array.  These losses were determined in preliminary tests performed by Capt Scott 

Bergren and described in Appendix A.  From these tests, it was determined that the Mach 

number produced from straight walls was approximately 15% less than the Mach number 
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produced from contoured walls designed for isentropic expansion.  Figure 3.4 is the 

constructed model nozzle array inside the test section.     

 

Figure 3.4 Test Section Nozzle Array 

 Straight nozzles were also fabricated to see the flow from the up-down plane.  As 

seen above in Figure 3.4, the view of the air passing through the nozzles is going from 

left to right.  This gives great images of shock activity around the centerbody, but not 

around the nozzle exit plane.  Shock interactions between the individual nozzles, as 

illustrated earlier in Figure 2.8, cannot be seen in the left-right viewing plane.  The up-

down plane will give a better detailed view of these shock interactions at the nozzle exit 

plane.  Four nozzles were fabricated for the array.  The dimensions were two times larger 

than the circular nozzle array to give a larger image of the shock interactions.  Figure 3.5 

shows a picture of the straight nozzles attached to the stilling chamber and test section.  

 The re-scaling of the straight nozzle array will most likely have a few effects on 

the flow at the exit plane.  The plumes of the flow exiting the nozzle array should be 

twice as big as the plumes exiting the circular array.  The mixing length of the straight 

nozzle array should also be doubled.  However, since the dimensions are still 
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proportional, the flow activity at the nozzle exit should still be relatively the same for 

both nozzle arrays.   

 

Figure 3.5 Straight Nozzle Array 

Centerbody. 
 

The centerbody was a symmetric airfoil in the center of the diffuser designed to 

split the oncoming radial flow into a top and bottom channel.  It consisted of three pieces:  

the leading edge, midsection, and tail.  The leading edge created a half angle of 21 deg 

and started 3.05 cm downstream of the nozzle exit plane.  The mid-section was created 

using 1.91 cm thick aluminum plates and remained hollow.  The tail then extended down 

the entire length of the diffuser with the trailing edge even with the diffuser exit plane.  

Figure 3.6 shows an illustration of the centerbody and its three components.  O-rings 

were placed on both sides of the airfoil along the outer perimeter and bolts held the airfoil 

in place with the sidewall every 5 cm for stability. 

 

 

 

Figure 3.6 Centerbody Model 
Leading Edge Midsection Tail

129.5 cm

Leading Edge Midsection TailLeading Edge Midsection TailMidsection Tail

129.5 cm129.5 cm
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Exhaust Manifold Assembly (EMA). 

 The EMA is a diffuser designed to control the fluid flow.  The EMA contains both 

the nozzle array and centerbody discussed earlier.  The contour for the top and bottom of 

the diffuser was designed and provided by TRW.  These top and bottom pieces were 

designed in one contoured and two straight segments to direct the radial flow exiting the 

nozzles to a horizontal flow while minimizing losses.  The three segments can be 

replaced by different geometries to further investigate the optimal design for redirecting 

the flow.  This aids in the design goal of modularity.  After the scaling, the diffuser was 

1.41 m in length and the height ranged from 33.3 cm at the entrance to 47 cm at the exit 

plane.    

The majority of the sidewalls for the EMA were constructed from aluminum, but 

the first 76 cm was made of an optical grade Plexiglas to observe the flow characteristics 

within the optical cavity and around the centerbody.  This was one of the main changes 

from the sidewalls of the test section before reconstruction.  Initially, the Plexiglas only 

extended 30.5 cm downstream and only allowed flow visualization in the optical cavity 

and around the leading edge of the centerbody.  With the extension of the Plexiglas, flow 

around the mid-section of the centerbody in addition to the optical cavity and leading 

edge could also be evaluated.  Since no lasing occurred in the subscale model during 

testing, the region between the nozzle exit plane and the leading edge of the centerbody 

was referred to as the optical cavity rather than the lasing cavity. 

Transition Structure. 
 
 The design of the transition section was critical in directing flow from the EMA to 

the vacuum system, while still accurately modeling the SBL IFX.  Remodeling the 
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transition structure was a main focus of this research.  Initially, the transition structure 

connected the exit plane of the diffuser to the vacuum system using a rectangular section 

measuring 76.2 cm in length which decreased in height until it mated with the vacuum 

line.  The cross-sectional area at the beginning of the section matched the rectangular 

area of the diffuser exit.  However, since the vacuum line was circular, the rectangular 

exit of the transition structure was not able to capture the entire cross-sectional area.  This 

caused a reduction in area from the diffuser exit to the vacuum line of almost 3 to 1.  A 

diagram of the structure before reconstruction can be seen in Figure 3.7.  A photograph of 

the actual structure is shown in Figure 3.8 

 Figure 3.7 Previous Transition Structure Diagram (Bergren, 2002)      

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.8 Previous Transition Structure Photograph (Bergren, 2002) 
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 Figure 3.8 shows the reduction in area from the diffuser exit plane to the vacuum 

line interface.  Almost two-thirds of the area of the vacuum line was lost by using a 

rectangular exit for the transition structure.  By mating the circular vacuum line with a 

circular transition exit, most of the cross-sectional flow area could be recovered.  Figure 

3.9 shows a picture of the remodeled transition section. 

 
 
 

 

 

 

 

 

 

 

 
Figure 3.9 Remodeled Transition Structure Photograph 

Note how the new transition structure mates to the diffuser exit in the same way that the 

previous one did.  The only difference, however, is that instead of staying completely 

rectangular in shape, this new structure conforms to a circular shape as it meets the 

vacuum line.  The vacuum line entrance and the transition structure exit area are almost 

nearly identical at approximately 285 cm2.  This is a large improvement over the 109 cm2 

exit area of the previous transition structure. 
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Wind Tunnel System 
 
 The wind tunnel system used for this research utilized a blow-down/vacuum 

combination which resulted in delivering a mass flow of almost 0.5 kg/s.  This wind 

tunnel system consisted of three smaller subsystems:  a compressed air system, a pressure 

regulating system, and ending with a vacuum system.  A schematic of the entire circuit 

can be seen below in Figure 3.10. 

 

 

 

 

 

 

 
 
 
 

 

 

Figure 3.10 Wind Tunnel System 

Compressed Air System. 
 
 The flow starts from the two Ingersoll-Rand SSR HXP 50 SE air compressors 

shown in Figure 3.11.  These compressors provided compressed air of up to 150 psi.  

After exiting the compressors, the air filtered through two Ingersoll-Rand air dryers 

where moisture and unwanted air particles were removed.  From there, a 6000 gallon 
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supply tank was filled and pressurized to the same pressure as the compressor air.  A 

photograph of the air compressors can be seen in Figure 3.11. 

 

Figure 3.11 Air Compressors 

Pressure Regulation System. 

 After the supply tank was filled and pressurized, a diaphragm-type pressure 

regulator was used to reduce the supply air to a pressure of 0.62 MPa (90 psi).  A 2 in, air 

loaded, pressure-reducing valve then reduced the pressure even further to a value set 

using an analog gauge controlled by the operator.  The reducing valve was able to 

establish a set pressure reduction by balancing the pressure difference across its 

diaphragm.  The reducing pressure range was 83 kPa – 0.9 MPa (12-133 psi).    A 12 in 

diameter stilling chamber acted as a reservoir immediately upstream of the test section.  

This provided a reservoir of air at near stagnation conditions.  A flow straightener was 

built into the downstream end of the stilling chamber to provide straight flow through the 

nozzles.  A shut-off valve allowed the supply air to enter the test section with a switch 

controlled by the operator. 
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Vacuum System. 

 A 22.7 m3 (6000 gallon) vacuum tank was evacuated by a Stokes Model 412 

MBX two-stage pumping unit to provide the vacuum required to operate the wind tunnel.  

The pumping unit consisted of a Stokes Model 412-11 Microvac Pump and a first stage 

blower driven by a 10 hp and 20 hp motor, respectively.    When the shut-off valve was 

switched on, compressed air passed through the test section to the vacuum tank at the 

end.  This would allow the wind tunnel to operate for approximately 30 seconds for each 

run.  Between each run, the pumping unit could evacuate the vacuum system within 

twenty minutes to reach a minimum pressure of approximately 3 torr (0.06 psia).  A slow 

action pneumatic butterfly valve was positioned where the vacuum line and the 

downstream end of the transition section mated together.  When the valve was switched 

to the open position, the test section was subjected to the vacuum.  The length of the 

vacuum line from the test section to the vacuum tank was 22.25 m (73 ft) with a diameter 

of 19.05 cm (7.5 in).  The vacuum line and its six 90-degree and two 45-degree elbows 

which were analyzed for loss calculations. 

 The final model was completed by connecting the test section to the existing wind 

tunnel system.  A picture of the fully-assembled subscale model is shown in Figure 3.12. 
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Figure 3.12 Completed Subscale SBL IFX Model with Transition Section 

Data Collection 
 

Schlieren photographs and pressure measurements were taken throughout the 

length of the test section to accomplish the objectives of this research.  The need to 

capture a large number of data points required the use of a rapid data acquisition system.  

This provided for static pressure readings at various locations to supplement the schlieren 

photographs. 

Pressure Transducers. 

 A total of seven Endevco model 8530C-50 miniature, high sensitivity 

piezoresistive pressure transducers (PTs) were used to collect static pressure 

measurements at the various locations at a frequency of 40 kHz.  The seven transducers 

had a pressure range of 0-50 psia.  The excitation voltage was 10 Vdc.  
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Data Acquisition System (DAS). 

 The Nicolet MultiPro 120 was the data acquisition system (DAS) used for this 

research.  This multi-channel data acquisition unit was controlled by a 386 class 

computer running Microsoft Windows.  The basics of the system included a 7 slot tower 

acquisition unit and four MP120 channel cards consisting of 4 channels each.  The 

system was set to sample at a rate of 100 Hz or approximately one reading every 10 ms.  

All readings from the pressure transducers were fed to Endevco Model 4428A signal 

conditioners which filtered and amplified the signals for the DAS.  These signals were 

then digitized by the channel cards.  The system controller would then read the digitized 

data via a General Purpose Interface Bus for display on the computer screen using 

Microsoft Windows.  

Schlierien Optical System. 

  Pictures of density gradients were obtained in the lasing cavity and parts of the 

diffuser using a schlieren optical system.  A diagram of the setup can be seen below in 

Figure 3.13. 

 

 

 

 

 

 

 

Figure 3.13 Schlieren Optical System 
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The light source originated from a cylindrical filament which caused the light to be 

slightly elongated rather than a small circular point.  This slightly degraded the quality of 

the images shown on the viewing screen, although the images captured were still very 

clear.  Ideally, a point light source is desired for images with the best quality.  The angle 

between the light source and the mirrors were kept small to keep the images from 

distorting.  As the angle between the two increases, so does the image distortion.  The 

knife edge cut the light source vertically to obtain the density gradients.  The viewing 

screen was a large piece of white poster board that allowed clear images of the test 

section.  A high resolution Photron FASTCAM-X 1280PCI digital camera was used to 

capture the video from the viewing screen at a rate of 60 frames per second.  The 

software provided with the camera allowed still shots to be taken from the video stream 

at any specified time. 

Experimental Procedures 
 

Four separate test procedures were performed to accomplish objective 2 of this 

research.  For each procedure, a pressure transducer was located in the stilling chamber to 

measure stagnation pressure immediately upstream of the test section.  A second 

transducer was located 61 cm downstream of the vacuum butterfly valve in the vacuum 

line.  This measured the back pressure of the system. 

Calibration and Uncertainty. 

   A portable pneumatic tester calibrated the pressure transducers at two separate 

pressure values.  All transducers were recalibrated approximately every three days to 

ensure accuracy. 
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 A detailed uncertainty analysis of the pressure readings was performed by Capt 

Scott Bergren in the research preceding this, and is shown in Appendix B (Bergren, 

2002).  The uncertainty for a single pressure measurement is 0.3 psi.  This resulted from 

bias and precision error in both the pressure transducer and signal conditioner.  This 

uncertainty in pressure also affected the calculations of Mach number and mass flow.  

These will be discussed later in Chapter 4.   

Wind Tunnel Operation. 

 Before the test run could be started, the schlieren optical system and 

instrumentation had to be ready.  The spark lamp was turned on and adjustments were 

made with the knife edge to obtain a clear and sensitive image on the viewing screen.  

The instrumentation was set to trigger once the test section pressure went below 

atmospheric pressure.  Once all of this was accomplished, the wind tunnel was ready to 

run. 

 Initially all air valves were closed, and the camera capturing the schlieren images 

switched to record.  First, the butterfly valve was opened to allow the vacuum to pull 

through the test section, stilling chamber, and plumbing all the way to the supply valve.  

This would then trigger the DAS.  The system was allowed to settle for 1-2 seconds.  

Then the air shut-off valve was opened to release the compressed air through the system.  

The valve remained open until supersonic flow was no longer produced from the nozzles.  

The lack of gradients in the schlieren images would determine this.  The air shut-off 

valve was then closed, followed by the butterfly valve.  The DAS stopped collecting data 

automatically after a 30-second time lapse.  The results were immediately displayed 

graphically on a PC monitor.   
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Pressure Transducer Configurations. 

The same pressure transducer configurations were used for the first two 

procedures.  In addition to the transducers in the test section, transducers were also 

located in the vacuum supply line and stilling chamber.  Figure 3.14 shows the locations 

of the two transducers. 

 

 

 

 

 

 

 

 

 
Figure 3.14 Stilling Chamber and Vacuum Supply Pressure Transducer Locations 

Each pressure port in the diffuser section was drilled through the sidewall except for PT3.  

The port at PT3 was drilled through the top of the test section.  Figure 3.15 shows a 

diagram of the pressure transducer locations.   

 
Figure 3.15 Test Section Pressure Transducer Configuration 
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These locations are similar to the configuration used for the previous study.  The only 

difference is that PT1 and PT2 were added to the front of the test section.  PT1 was added 

to collect pressure data near the nozzle exit, while PT2 collected data immediately behind 

the oblique shock wave.  Table 3.2 provides a list of all transducers.  The cross-sectional 

area at each location is included.  The areas listed for PT2-PT4 are for only the upper half 

of the test section above the centerbody.  This could be done since the flow was assumed 

to be symmetric. 

Table 3.2 Cross-Sectional Areas for PT Configuration 

Pressure Transducer (PT) Cross-Sectional Area [cm2 (in2)] 
1 A1 = 100.6 (15.6) 
2 A2 = 66.8 (10.4) 
3 A3 = 59.5 (9.2) 
4 A4 = 72.9 (11.3) 
5 A5 = 150.3 (23.3) 

 
 The first two procedures used the PT configuration described above in Figure 

3.15.  The only difference between the two procedures was the viewing area for the 

schlieren optical system.  Figure 3.16 illustrates the viewing areas for both procedures. 

 

 
 
 
 
 
 
 
 

Figure 3.16 Viewing Areas for Procedures 1 and 2 

Area 1 was the region downstream of the nozzle array and upstream of the centerbody.  

This included the expanding flow after the nozzle exit plane and the oblique shock wave 

that forms off the leading edge of the centerbody.  Area 2 allowed visual images of the 
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wave reflections off the upper walls and the expanding flow around the upper level of the 

centerbody.  These images from both areas could be combined to show a picture of flow 

activity for approximately the first 40 cm of the test section.   

 For the third and fourth procedure, the test section was removed from the stilling 

chamber.  The straight nozzle array described earlier in this chapter was attached to the 

stilling chamber and test section.  The butterfly valve was opened to subject the test 

section and stilling chamber to the vacuum.  Compressed air was then released through 

the nozzle array and into the test section.  Data was collected by a pressure transducer, 

PT6, 0.25 in downstream of the nozzle exit plane shown in Figure 3.17.  Schlieren 

images were captured in Areas 1 and 2.  Table 3.5 describes the separate test procedures 

in an experimental test matrix. 

 
 

 

 

 

Figure 3.17 Pressure Transducer Configuration for Straight Nozzle Array 

Table 3.3 Experimental Test Matrix 

Test 
Procedure 

Viewing 
Area 

Straight 
Nozzles 

Pressure 
Transducers 

1 1 No PT1-PT5 
2 2 No PT1-PT5 
3 1 Yes PT6 
4 2 Yes PT6 
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IV. Results 
 

Pressure Measurements 
  
 The reservoir pressure shown in Figure 4.1 and the vacuum supply pressure, 

otherwise known as the back pressure, shown in Figure 4.2 dictated the diffuser 

performance during test runs. 
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Figure 4.1 Typical Reservoir Pressure 

 To initiate the test run, the butterfly valve was first opened.  The initial dip in 

Figures 4.1 and 4.2 indicated the vacuum butterfly valve opening.  After the vacuum was 

allowed to pull on the test section for approximately one second, the compressed air was 

released into the test section.  This is shown by the rapid increase in pressure at 

approximately the two-second point.  After the increase, the stilling chamber stabilized its 

reservoir pressure and settled into a steady state until the compressed air was switched off 

and the butterfly valve closed at approximately 28 sec.  For the particular plot shown in 
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Figure 4.1, the reservoir pressure reached a steady and consistent reading of about 183 

kPa (26.5 psia) during the test run.  As stated above in Chapter 3, there is a +/- 2 kPa (0.3 

psia) uncertainty for a single pressure measurement.  

y = 1.4126x + 7.1135
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Figure 4.2 Typical Vacuum Supply Pressure 

 When the butterfly valve was opened, the vacuum supply pressure leveled at 

approximately 1.2 kPa (0.17 psia).  As the compressed air entered the test section, the 

back pressure jumped to 13.8 kPa (2 psia).  The jump in back pressure as the compressed 

air was released can be attributed to head loss within the vacuum system.  The head loss 

was analytically determined to be 7.4 kPa (1.1 psia) and assumes an average velocity and 

density within the vacuum lines.  The detailed calculations of the head loss can be found 

in Appendix C. 

 While the compressed air ran through the test section, the back pressure increased 

in a near linear fashion.  This was indicative of a steady mass flow.  As seen in Figure 
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4.2, the linear regression line fit shows the back pressure rose at a rate of 1413 Pa/s (0.2 

psia/s).  Analytically, the back pressure was predicted to rise at a rate of 1759 Pa/s (0.26 

psi/s).  The rate the back pressure rises is dependent on the reservoir pressure.  The higher 

the reservoir pressure, the higher the rate of change.  These calculations can be seen in 

Appendix D.       

 The mass flow rate was calculated using Eq. (1) from Chapter 3.  This calculation 

was applied at the throat of the nozzle where the flow was assumed to be choked and the 

Mach number equal to one.  The results are shown below in Figure 4.3. 
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Figure 4.3 Typical Mass Flow Rate 

 The mass flow rates shown above correspond to the reservoir pressure readings 

displayed in Figure 4.1.  The reservoir temperature was assumed to be at room 

temperature (290 K) and constant.  Since the mass flow calculations are directly 

dependent on pressure and temperature, the shape of the plot displayed in Figure 4.3 

matches exactly with that of Figure 4.1.  For this particular test run, the mass flow is 
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constant at a rate of 0.48 kg/s.  According to Capt Scott Bergren, the maximum error for a 

single mass flow calculation was determined to be +/- 4.7 g/s and the calculations are 

shown in Appendix B. 

 Pressure data was collected to determine Mach number at various locations 

throughout the diffuser.  Figuer 4.4 shows the static pressure measurements for PT1, PT2, 

and PT3. 

 

 

 

 

 

 

 

 

 

 
Figure 4.4 Static Pressures for PT1, PT2, and PT3 

 The Mach number was calculated for PT1, PT2, and PT3 using the static pressure 

measurements from Figure 4.4 and cross-sectional area as stated in Eq. (2) from Chapter 

3.  These results are shown in Figure 4.5.   
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Figure 4.5 Mach Numbers for PT1, PT2, and PT3 

As seen in Appendix B, the max error for a single Mach number calculation is +/- 0.1.  

This was the case for Mach number calculations at every PT location.  The highest 

velocities were shown to be at PT1 directly aft of the nozzle exit plane.  This is expected 

since the air has not yet had a chance to be diffused.  As the air travels down the length of 

the diffuser it is slowed.  This is seen in the difference in velocities from PT1 to PT2.  At 

PT1, the Mach number peaks at approximately 3.8 and then levels at 2.7.  Although 

Figure 4.5 shows a peak of Mach 3.8, the flow never actually reaches this velocity.  The 

peak is due to the method in calculating Mach number.  The Mach number calculated 

above is based on the mass flow rate from the stilling chamber.  In the calculations, once 

the compressed air is turned on, it is assumed that the mass flow is constant along the 

entire test section.  However, in reality, it takes the air a small amount of time to reach 

each pressure transducer.  Therefore, immediately after the compressed air is switched 
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on, the pressure readings are very low at the transducers and the mass flow rate is high in 

the reservoir.  Eq. (2) shows that a high mass flow rate combined with a low pressure will 

result in a higher than expected Mach number. 

Once the Mach number levels, the flow reaches a steady state, as shown in Figure 

4.5.  Both Mach numbers at PT2 and PT3 level at approximately 1.5.  The decrease in 

Mach number from PT1 to PT2 and PT3 is caused by an oblique shock formed at the 

leading edge of the centerbody.  PT1 is in front of the shock, while the other two are 

behind it.  Mach number decreases across the shock, as shown in Figure 4.5.  This will be 

explained further in detail when the schlieren results are reported.  The Mach number 

remains at this level until the flow at each location becomes subsonic due to the rising 

back pressure.  Since PT3 is the closest transducer to the vacuum supply, the rising back 

pressure causes it to be the first transducer to record subsonic speeds.  This is shown in 

Figure 4.5at approximately 7 seconds.  PT2 follows at about 9 seconds, and finally PT1 

records subsonic speeds at about 11 seconds.  Since the compressed air was released at 

about two seconds, PT1 holds its “steady state” for approximately 9 seconds.   

The temperature used to calculate Mach number at all three points was found 

using an iterative procedure.  First, an initial guess was used for the local temperature at 

each transducer.  The guessed local temperature was then compared to the total 

temperature in the stilling chamber, assumed to be room temperature (290 K), to obtain a 

static-to-total temperature ratio.  Using tabulated isentropic relationship tables, the 

corresponding Mach number was found (Kuethe and Chow, 1998).  This value was then 

compared to the calculated value from Eq. (2).  If the two Mach numbers did not match, 

the initial guess for the local temperature was adjusted until the two numbers converged.  
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The local temperatures for PT1, PT2, and PT3 converged at 107, 202, and 201 K 

respectively.  The increase in temperature from PT1 to PT2 and PT3 is expected.  As the 

distance down the diffuser increases, the Mach number will decrease.  Since Mach 

number is inversely related to temperature, this would indicate that temperature should 

increase.   

To validate the results at PT1, the Mach number was also calculated using the 

isentropic pressure relationship shown in Eq. (3).  Total pressure from the stilling 

chamber was compared to the static pressure read by PT1.  Figure 4.6 shows the 

comparison of the calculated Mach number using both Eqs. (2) and (3). 
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Figure 4.6 Comparison of Calculated Mach Number at PT1 Using Eqs. (2) & (3) 

Since the steady state portion of the run is the focus of interest, only t = 2-11 

seconds is shown in Figure 4.6.  During the steady state portion of the test run, Mach 

number calculated using Eq. 2 is approximately 20% less than the Mach number from Eq. 
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3.  The Mach number from Eq. 3 only relies on the total pressure recorded in the stilling 

chamber and the static pressure recorded by PT1.  Eq. 2 takes into account both the cross-

sectional area and static temperature at PT1.  The difference between the two calculations 

indicates that iterating on temperature to determine Mach number from Eq. (2) allows for 

more uncertainty.  Also, the cross-sectional area measured at PT1 could be slightly off, 

contributing to the difference. 

The calculated results do take into account the losses due to the uncontoured walls 

of the nozzles.  Using Eq. (3) and assuming isentropic flow (contoured walls), the Mach 

number at the nozzle exit plane was calculated to be approximately 3.4 during the steady 

state period.  Capt Scott Bergren, through experimental procedures shown in Appendix 

A, determined that the losses through the nozzles were approximately 15%.  This would 

make the actual Mach number at PT1 approximately 2.9.  This is within 5% of the 

calculated Mach number shown in Figure 4.5   
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Figure 4.7 Mach Numbers for PT4 and PT5 

 For PT4 and PT5, both transducers in Figure 4.7 show subsonic speeds 

immediately after startup.  The Mach numbers for the two locations are almost identical 

throughout the run.  PT4 is higher at initial startup, but then converges to the values of 

PT5 around the 10 second point.  As stated earlier, the peak Mach number of 3.6 at PT4 

resulted from the method of calculation rather than the actual fluid velocity.  Since the 

two transducers are located towards the end of the diffuser, subsonic speeds are expected 

at these locations.  The temperatures at these locations were also found using the iteration 

procedure discussed earlier.  The static temperatures for both PT4 and PT5 were found to 

be 260 and 272 K, respectively.  
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Schlieren Images 

The schlieren optical system was used to capture video images.  After the video 

was captured, computer software allowed still images to be seen at any point in time.  As 

explained earlier in Chapter 3, two different areas were viewed.  Since the images in Area 

1 and 2 had to be captured in two different test runs, matching the reservoir pressure was 

the key to obtaining matching results.  This would insure that the flow for both 

procedures were nearly identical.  The reservoir pressures for the two runs were within 

0.2 psi of each other.  Since the two pressures were very close, the shock waves from the 

two areas matched very well.  An image of the two areas combined at t = 5s can be seen 

in Figure 4.8. 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

  
 
Figure 4.8 Combined Schlieren Image of Areas 1 and 2 at Time = 5.0s 

Although there is no way to match the times of Areas 1 and 2 exactly, the two images are 

both taken during the steady state period.  Therefore, the shock formations are not 

significantly changing with time and the images could be combined. 
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Area 2
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For many of the following figures, the view area is circled in the upper right hand 

corner.  Because the light in the schlieren system only reflects off one mirror after 

traveling through the test section, the images projected on the viewing screen are reversed 

and upside-down when compared to the actual flow.  The images have been modified to 

show the actual flow direction as seen in Figure 4.9.     

 

 

 

 

 

 

 

 

 

 
 

 
 
 
 
 
 

Figure 4.9 Schlieren Images of Oblique Shock Wave Motion in Area 1 

When the compressed air is released into the test section, an oblique shock wave 

immediately forms off the leading edge of the centerbody, as shown at t = 0.1s in Figure 

4.9.  This shock wave holds until approximately seven seconds after the compressed air 

t = 0.1s t = 5.0s

t = 7.0s t = 10.25s

t = 0.1s t = 5.0s

t = 7.0s t = 10.25s
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was released.  At this point, the back pressure has started to push the shock wave towards 

the nozzle array.  This process continues until the shock wave detaches from the leading 

edge and becomes perpendicular to the radial flow at t = 10.25s.  This gives a total steady 

state time of over 10 sec.  In previous results produced by Capt Scott Bergren, a steady 

state time of only 0.2 sec was achieved.  This run time extension is mostly due to the 

remodeling of the transition structure.  Enlargements of the photographs shown in Figure 

4.9 can be seen in Appendix E.  

 The measured shock wave angle at t = 5.0s and the wedge half-angle dictate that 

the flow at the leading edge of the centerbody was traveling at approximately 2.8.  This is 

only slightly higher than the velocity at PT1 during its steady state shown previously in 

Figure 4.5.  This is possibly due to the +/- 0.1 calculation error in Mach number.  Since 

the nozzle exit plane Mach number was designed to be 2.2, the multiple jets must be 

underexpanded at the exit, and further expansion occurs after the nozzle exit plane to 

accelerate the fluid to Mach 2.7 before the transducer at PT1.  

Using the schlieren image from t = 5.0, the pressure at PT2 was analytically 

calculated and compared to the experimental results below in Figure 4.10.  The analytical 

calculations can be seen in detail in Appendix F. 
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Figure 4.10 Comparison of Experimental and Calculated Pressure at PT2 

Figure 4.10 only displays the time from 2-10 seconds since the steady state period is the 

only time of interest.  The calculated pressure is slightly higher than the experimental 

pressure by approximately 15%.  The shock wave angle and turning angle used to 

calculate PT2 was 40 deg and 11 deg, respectively.  The calculated pressures in Figure 

4.10 were based on pressure readings from PT1 immediately after the nozzle exit plane.  

The light radial lines in the optical cavity indicate expansion still occurs past PT1 which 

would cause static pressure in front of the leading edge of the centerbody to drop slightly 

from PT1.  Since no transducer is located immediately forward of the leading edge, PT1 

was used to analytically determine readings at PT2.  This is most likely the cause for the 

higher calculated pressures in Figure 4.10.  The analytical calculations can be seen 

Appendix F. 

  The Reynolds number (Re) at the leading edge was calculated to be 

approximately 2.8x105.  The characteristic length used for calculating Re was the 

distance from the center of curvature of the nozzle array to the leading edge of the 

centerbody (0.105 m).  Velocity and static temperature at the leading edge were 
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calculated using the schlieren images in Figure 4.9.  Density was calculated using ideal 

gas properties and pressure measurements from PT1.  The purpose of calculating 

Reynolds number was to determine if similarity was achieved.  TRW determined the 

Reynolds number at the leading edge of the wedge to be approximately 1.8x104 through 

computational results.  Therefore, the subscale model is an order of magnitude higher 

than the numerical results found by TRW.  The reservoir pressure was reduced to try and 

match the Reynolds numbers, but the lowest pressure achievable was 59 kPa (8.5 psia).  

Since the regulating system operated only on guage pressure, the diaphragm was not able 

to regulate under atmospheric conditions.  Using this pressure the Reynolds number was 

1.9x105. 

The reduction in reservoir pressure may have reduced the Reynolds number, but 

the Mach number remained the same at each location for all test runs.  The reason for this 

is demonstrated in Eqs. (1) and (2) shown earlier in Chapter 2.    
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As the reservoir pressure is reduced, mass flow and static pressure also decrease.  If both 

of these values lower proportionally, no net change in Mach number will occur, as shown 

in Eq. (2). 
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Figure 4.11 Schlieren Images of Normal Shock Wave Motion in Area 1 
 

As shown in Figure 4.8, the shock becomes normal to the flow and detaches from 

the leading edge at t = 10.25s.  Figure 4.11 provides a sequence of images immediately 

following the ones shown in Figure 4.9.  The normal shock travels upstream towards the 

nozzles after detaching from the leading edge.  At 15 seconds, it has almost reached the 

nozzle exit.  At 20 seconds, multiple shock waves form to rapidly slow down the flow in 

order to meet the rising back pressure behind the shocks.  Lastly, at 25 seconds, the 

waves move closer together and stand immediately downstream of the nozzle exit plane.  

The images in both Figure 4.9 and 4.11 show that the flow is symmetric.  

The distance the lines are observed downstream of the nozzles can indicate 

whether the flow in underexpanded or overexpanded.  Immediately after the compressed 
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air is released into the test section, the nozzles are underexpanded.  This is shown by the 

flow continuously expanding after the exit plane in Figure 4.8 and 4.9.  At t = 25s in 

Figure 4.11, the back pressure has driven the normal shock wave almost completely to 

the nozzle exit.  For an overexpanded nozzle, the shock diamond pattern should extend 

no more than 5-6 nozzle widths from the exit plane (Bjurstrom, 1984).   Since the shock 

is within this range, it can be assumed that the nozzles become overexpanded at 

approximately 25 seconds.  Therefore, for each test run, the nozzles start underexpanded 

until the back pressure rises high enough to drive the shock forward and make the nozzles 

overexpanded at approximately 25 seconds.   

The amount of time for the nozzles to switch from underexpanded to 

overexpanded is dependent on the reservoir’s operating pressure.  A higher reservoir 

pressure will cause the back pressure to rise at a higher rate, therefore, the higher the 

reservoir pressure is, the faster the nozzles will become overexpanded.    
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Schlieren photographs were also taken immediately downstream of Area 1 to get 

the full picture of the shock activity throughout the diffuser.  These pictures can be seen 

in Figure 4.12.   

 

 

 

 

 

 

 

 

 
 
 
 

Figure 4.12 Schlieren Images of Oblique Shock Wave Motion in Area 2 
 

As in Area 1, an oblique shock is seen immediately after startup.  The reflection of the 

oblique shock is seen off the outer wall.  Since the shock appears to travel all the way to 

the wall, this is an indication that there is no separated flow along the wall.  The shock 

and reflections hold until approximately 6 seconds, where the shock wave starts to move 

forward.  This is slightly ahead of the time when the oblique shock wave attached to the 

centerbody moved forward in Area 1.  This is to be expected since Area 2 is farther 

downstream and closer to the diffuser exit.  At t = 10.25s, the shock waves are 

completely pushed upstream, and the flow in area 2 is now subsonic.  Enlarged images of 

the ones shown in Figure 4.12 can be seen in Appendix G. 
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One advantage to the view in area 2 is the picture of the second shock wave 

attached to the centerbody.  In Figure 4.9, it is barely seen at the far right side at t = 5.0s.  

In Figure 4.12, it is well defined and seen in its entirety.   

Since there is no turning angle to cause the shock, an in depth analysis is needed.  

PT2 shows that during the steady state period, the Mach number is approximately 1.5.  

During the same time, the Figure 4.5 indicates that the Mach number at PT3 is also 

approximately 1.5.  This is shown in Figure 4.13. 

 

   

  

 

 

 

 
 
 

Figure 4.13 Detailed Schlieren Image of Area 2 at Time = 5.0s 

After the flow passes the first oblique shock wave, it must turn 21 deg to become straight 

and flow along the mid-section of the centerbody.  According to expansion wave theory, 

a flow at Mach 1.5 and turning 21 deg should accelerate to Mach 2.2 after the turn.  

However, Figure 4.13 shows the flow at only Mach 1.5.  This was measured at the 

location shown for PT3.  Since the back pressure is constantly rising during the test run, 

flow at PT3 does not exceed Mach 1.5.  This is the reason for the second shock wave 

indicated where shown in Figure 4.13.  Flow must expand around a corner, and in turn, 

accelerate according to theory.  However, in order for the flow to accelerate to 1.5, the 
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original flow before turning must be approximately 1.1.  Therefore, an oblique shock 

wave must form before the turn to decelerate the flow after the initial shock from Mach 

1.5 to 1.1.  The flow then expands around the corner, as shown in Figure 4.13, and 

accelerates to the measured Mach 1.5 at PT3.  Therefore, it is evident that the flow 

conditions downstream dictate the activity upstream rather than the other way around.    

Optical Cavity Analysis 

The optical cavity shown in viewing area 1 is the most important area for flow 

analysis in the diffuser.  As stated earlier in Chapter 1, the quality of the laser beam is 

highly dependent on the flow characteristics within the lasing cavity.  Therefore, a 

detailed analysis of all shock activity within the optical cavity is needed.  Figure 4.14 

identifies expansion fans in the optical cavity during the steady state period. 

 

 

 

 

 

 
 
 
  

Figure 4.14 Horizontal Expansion Fans in Optical Cavity 

As seen above, there are a couple of light horizontal lines which run through the top and 

bottom of the cavity.  The first line originates at the very top and bottom of the nozzle 
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array.  The upper and lower outer walls at the nozzle exit are not exactly perpendicular to 

the nozzle exit plane.  It actually “flares out” a little as seen in Figure 4.15.   

 
 

 

 

 

 

 

Figure 4.15 Orientation of Outer Wall at Nozzle Exit 

The sketch above is an exaggerated view to show how the outer wall is “flared out.”  

Since the flow exiting the nozzle array must turn to travel parallel to the outer wall, an 

expansion wave must occur.  This explains the first light horizontal line leaving the top 

and bottom of the nozzle array.   

 The second expansion fan runs horizontally from the outer wall to the oblique 

shock wave.  This expansion wave is immediately followed by a shock wave.  These two 

actions are caused by caused by a small step in the outer wall illustrated in Figure 4.16. 

 
 
 
 
 
 
 
 
 

  

  

Figure 4.16 Sketch of Outer Wall Step 
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This step was in the TRW design of the diffuser and therefore, was put into the design of 

the test section.  Since the flow must turn twice during this step, an expansion fan is 

formed during the first turn, and then a shock wave is formed to bring the flow back 

parallel to the wall.  The expansion fan is evident in the very light shaded line running 

from the step to the oblique shock wave.  If the line is observed closely, a black line can 

be seen outlining the expansion fan on the outer side.  This is an indication of the shock 

wave which brings the flow back parallel to the wall. 

The expansion of flow from the nozzle exit plane to the leading edge can be seen 

in the faint radial lines in the optical cavity normal to the flow, as pointed out in Figure 

4.14.  These are most likely the intersecting expansion waves from each individual jet.  

Due to the orientation of the light source and the nozzle array, the expansion waves and 

shock diamonds discussed in Chapter 2 cannot be seen in the schlieren images.  A 

diagram of the light source orientation through the nozzle exit plane can be seen in Figure 

4.17.  The intersecting expansion and compression waves are the largest gradients in the 

image and appear as lines perpendicular to the flow as seen in Figure 4.11 and 4.15.  The 

light lines indicate expansion, while the dark ones show compression shocks. 

 
 Figure 4.17 Schlieren Light Source Orientation 

Light Direction 
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 When the flow reaches the second horizontal expansion fan shown in Figure 4.14, 

the flow turns with the step, but the shock wave turns the flow back to travel parallel to 

the outer wall.  Th  is is indicated in Figure 4.16.  The flow continues to turn into itself as 

it follows the outer wall.  Since the outer wall is straightening the flow, the oblique shock 

attached to the wedge must “bow” towards the nozzles slow down the flow.  This is the 

reason for the curve in the oblique shock wave near the outer walls. 

Comparison to CFD Results 

 Comparing the experimental results to the CFD results obtained by TRW was part 

of the second objective of this research.  Figure 4.18 displays the image in Figure 4.8 

along side a Mach line contour plot obtained numerically by TRW.   

 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.18 Comparison of Experimental and CFD Results in Areas 1 & 2 

 
The first thing to notice is that both results contain an oblique shock wave that 

forms off the leading edge of the centerbody.  However, the angle for the shock wave in 

the CFD results is slightly higher.  This results in a smaller Mach number of 

approximately 2.3 at the leading edge for the numerical results.  As mentioned earlier, the 
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angle for the experimental results indicates a Mach number of approximately 2.8 at the 

leading edge of the centerbody.  This difference is probably due to the slight variations in 

geometry between the numerical and subscale model.  For instance, the distance of the 

centerbody from the nozzle exit plane should be 1.2 in according to the conceptual TRW 

design.  However, the actual distance in the subscale mode is approximately 1.32 in.  

This can contribute to the difference in Mach number between the two results.     

Another difference is the experimental shock wave bends towards the nozzles as it 

gets closer to the outer wall, while the numerical shock wave bends towards the diffuser 

exit.  This can attributed to the rising back pressure of the experimental results.  In the 

numerical results shown above, a constant back pressure of 7 torr (0.15 psi) was used.  As 

stated earlier in Chapter 3, the vacuum was able to evacuate the air in the test section 

down to approximately 3 torr (0.06 psi).  However, after the xompressed air was released 

into the system, the head loss jumped the pressure up to 13.8 kPa (2 psi) within 

approximately 0.1 sec.  Therefore, the rising back pressure for the experiment started out 

much higher than the constant back pressure for the numerical results.  Since the back 

pressure was much less for the numerical results, and was constant throughout the test 

run, the shock wave was able to bed towards the diffuser exit rather than towards the 

nozzle array. 

A second oblique shock wave is also seen in both results.  Both of these shock 

waves occur where the centerbody turns to become straight and parallel with the outer 

wall.  The difference between the two shock waves, however, is that an expansion fan 

occurs immediately after the experimental shock wave, while separation occurs behind 

the numerical shock wave.  No evidence of separation is seen in the experimental results.  
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The Mach number behind the second oblique shock wave matches the Mach number of 

the experimental results.  Both show a velocity of approximately Mach 1.5 in this region.   

Other points of interest between the two results are the radial expansion fans seen 

in both results.  During the steady state portion of the run, radial expansion fans are 

present in the optical cavity for both results as identified in Figure 4.18.  Since the cross-

sectional area is increasing between the nozzle exit plane and the leading edge of the 

centerbody, the supersonic flow expands as it exits the nozzle array.  This is similar for 

both results. 

Finally, both results show shock waves coming off the outer walls as identified in 

Figure 4.18.  These waves are caused by reflections of the oblique shock wave attached 

to the leading edge of the centerbody, and the outer wall straightening the flow.  The 

shock waves from the experimental results start farther downstream than the ones shown 

in the CFD results.  This is due to the faster Mach number at the leading edge for the 

experimental tests.  Since the flow at the leading edge is faster for the experimental tests, 

the shock wave coming of the leading edge has a smaller angle.  This will cause the 

reflection off the outer wall from this wave to occur farther downstream.   

Most of the differences between the two results can be attributed to the rising 

back pressure during experimental testing, and slight differences in measurements 

between the numerical and subscale model.  Despite these small differences, the images 

shown in Figure 4.18 indicate that the two flows are very similar.   
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Straight Nozzle Analysis 

Straight nozzles were analyzed to see the flow at an angle 90 deg to that shown 

with the circular nozzle array.  Figure 4.19 shows a time sequence of the flow exiting the 

straight nozzles into Area 1. 

     

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 

Figure 4.19 Straight Nozzle Flow in Area 1 
 
The reservoir pressure for these test runs was nearly identical to that of the circular 

nozzle tests.  They matched to within 0.3 psi.  This insured that the pressure ratio 

between the nozzle opening and nozzle exit were the same for both procedures.  

Immediately after the compressed air was released, an oblique shock wave similar to 

Figure 4.9 attached to the leading edge of the centerbody.  Using the angles of the wedge 

and the shock wave, the Mach number was calculated to be approximately 2.8 at the 

leading edge.  This is identical to the Mach number calculated in Figure 4.9.  Enlarged 

images from Figure 4.19 can be seen in Appendix H.   

t = 0.1 s t = 5.0 s

t = 7.0 s t = 11.0 s

t = 0.1 s t = 5.0 s

t = 7.0 s t = 11.0 s
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 The flow followed a similar pattern to that of Figure 4.9.  Initially, the nozzles 

were underexpanded at the nozzle exit plane and an oblique shock wave attached to the 

leading edge of the centerbody.  During the steady state portion of the test run, the 

oblique shock wave held its form and the individual jets of the nozzle array were fully 

interacting with each other.  Notice how the oblique shock wave bowed forward toward 

the nozzle array as it got closer to the outer wall.  This is similar to Figure 4.8.  At 

approximately 7 sec, the back pressure starts pushing the shock wave forward toward the 

leading edge of the centerbody.  At approximately 11.0 sec the oblique shock wave was 

nearly detached from the leading edge.  The shock wave totally detaches from the leading 

edge at approximately 13 seconds.   

These actions and the times of their occurrence are slightly longer than those 

shown in Figure 4.9.  This can be attributed to the differing mass flows between the two 

procedures.  With the circular array, the ten nozzles have a cross sectional area of 11 cm2 

at the throats.  The straight nozzle array only has a total throat area of 5.27 cm2.  Since 

the straight array has almost half the area of the circular array, the mass flow rate is 

reduced by nearly a half.  During the steady state period for both procedures, the mass 

flow rates for the straight and circular array were 0.23 kg/s and 0.48 kg/s, respectively.  

Since the mass flow is less with the straight array, it takes longer for the vacuum tank to 

fill, and the back pressure does not rise as quickly.  Therefore, it takes longer for the back 

pressure to cause subsonic flow upstream for the straight nozzle array.   

 Figure 4.19 also shows how the flow at the nozzle exit changes with time.  At t = 

0.1 and 5 sec, it can be seen that the nozzles are underexpanded since the flow expands 

outward towards the outer walls.  As time progresses, the plumes become smaller and the 
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flow does not expand outward as far.  This is seen at t = 7 sec.  At t = 11 sec, the flow 

exits the nozzles in an almost straight line.  This confirms that the nozzles are 

underexpanded after startup, but transition to overexpanded as the back pressure rises. 

 Schlieren images were also captured from the straight nozzle array in Area 2.  

Figure 4.20 shows a sequence of the flow activity in this area.  Enlarged images can be 

seen in Appendix I.   

 

 

  

 
 
 

 
 
 
 
 
 
 
 

Figure 4.20 Straight Nozzle Flow in Area 2 

Figure 4.20 shows similar flow activity to Figure 4.12.  During the steady state for both 

nozzle arrays, an oblique shock comes off the centerbody just before the turn, and an 

expansion wave occurs immediately after it.  Figure 4.21 shows this in more detail.  One 

difference, however, is the length of time the second oblique shock stays in place.  Even 

after 11 s, the oblique shock is still present.  This again is due to the lower mass flow rate 

of the straight nozzle array.  The back pressure has not raised high enough to cause 

subsonic flow at this location yet. 

 

t = 0.1 s t = 5.0 s

t = 7.0 s t = 11.0 s

t = 0.1 s t = 5.0 s

t = 7.0 s t = 11.0 s
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Figure 4.21 Shock Activity in Area 2 at T = 5.0 sec 

 As stated earlier, the shock activity in Area 2 are very similar for both the circular 

and straight nozzle arrays.  Figure 4.21 identifies the oblique shock waves and expansion 

fans for both arrays, since it can be a little hard to see in the previous images.  The second 

oblique shock wave seems to occur at approximately the same location and the expansion 

wave occurs immediately downstream of the shock wave for both arrays.  This gives a 

good indication of flow similarity between the two nozzle arrays. 

The image from Figure 4.19 at t = 5.0 s can be shown with Figure 4.9 at t = 5.0 s 

to compare the steady state flow interactions from two different angles at almost identical 

times.  Figure 4.22 identifies expansion wave intersections in the optical cavity from the 

two different angles.  The approximate distances between intersections are also shown. 

 

 

 

 

 

 

 
Figure 4.22 Expansion Wave Intersections in Optical Cavity at T = 5.0 sec 
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The flow seen in the first image of Figure 4.22 compares with the underexpanded nozzle 

cluster drawing shown in Figure 2.8.  The first intersections seen are immediately after 

the nozzle exit plane.  This is barely seen in the circular array image.  Two more wave 

intersections can be seen downstream in the optical cavity before reaching the leading 

edge of the centerbody.  In the straight nozzle array, the second intersection occurs 

approximately 0.6 in downstream of the nozzle exit, while the circular array shows a 

distance of approximately 0.3 in.  The third intersection is almost 1 in downstream of the 

second intersection for the straight array compared to 0.7 in for the circular array.  The 

distances for the straight nozzle array are approximately double the distances for the 

circular nozzle array.  This can be attributed to the fact that the dimensions of the straight 

nozzle array are twice as big as the circular array. 

 PT6 pressure data was collected approximately 0.25 in downstream of the nozzle 

exit plane.  The data was used to determine Mach number at this location.  Figure 4.23 

and 4.24 display the static pressure and the Mach number, respectively, at PT6. 
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Figure 4.23 Static Pressures for PT6 

  

 

 
 

 

 

 

 

   
 
  

 

 
Figure 4.24 Mach Number for PT6 
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The Mach number at PT6 shows a steady state from approximately 3 sec to 15 

sec.  During this time the Mach number is approximately 2.4.  Since the nozzles are 

designed for a Mach number of 2.2, expansion must occur immediately after the nozzle 

exit plane to increase the Mach number before PT6.  This is confirmed by the first image 

in Figure 4.22. 

 The Mach number at PT6 was also calculated using the isentropic pressure 

relationship shown in Eq (3).  Figure 4.25 shows a plot of Mach number calculated using 

Eqs. (2) and (3) at PT6 during the steady state portion of the test run. 
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Figure 4.25 Comparison of Calculated Mach Number at PT6 Using Eqs. (2) & (3) 

Without accounting for losses, the Mach number at PT6 is approximately 3.1 during its 

steady state time.  The Mach numbers calculated using Eq. (2) are approximately 20-25% 

lower than the ones calculated from Eq. (3).  This difference is slightly higher than the 

15-20% difference found in the circular nozzle array.  This is again probably due to the 

iteration on temperature during the steady state and the measurement of the cross-
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sectional area.  If losses are again assumed to be 15%, Eq. 3 shows that the nozzle exit 

velocity was approximately Mach 2.6.  This is slightly lower than the Mach 2.7 recorded 

by PT1 in the circular nozzle array.  However, the error in a Mach number calculation is 

+/- 0.1, and could be the reason for the difference.  
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V. Conclusions and Recommendations 

First Objective-Remodel Transition Section 
 

The first objective was to remodel the previous test facility’s transition section so 

that it would increase run time and be capable of investigating flow conditions in a 

simulated laser nozzle assembly and lasing cavity using cold-flow.  The facility was 

designed to be modular for the purposes of testing various geometries.  The choke point 

in the previous transition structure was deemed the cause for the brevity of the transient 

oblique shock wave within the lasing cavity.  The transition structure was not part of the 

SBL IFX, but was a necessary means to mate the test section to the AFIT wind tunnel.  

The transition structure needed to be redesigned to allow for wind tunnel startup 

(Bergren, 2002:5-1). 

The transition section was remodeled to capture more area of the vacuum line 

entrance.  This meant forming the transition section to mate with a rectangular diffuser 

exit at its entrance and a circular vacuum line entrance at its exit.  This rectangle-to-circle 

transition section nearly captured all of the vacuum line cross-sectional area, and 

obtained a near 1 to 1 area ratio from its entrance to exit.  

Previous results obtained with the old transition section showed an oblique shock 

wave attached to the leading edge of the centerbody inside the optical cavity for only 0.2 

sec.  For test purposes to acquire data and to simulate the conceptual design, the oblique 

shock wave needed to remain in the cavity for a significantly longer period of time.  This 

is the time where the Mach number is at its highest.  As stated earlier, a high Mach 

number is consistent with low pressure, density, and temperature.  These are all desirable 

in the optical cavity. 
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After making the above changes to the transition section, this first objective was 

met with high success.  The length of time the oblique shock wave was present in the 

lasing cavity increased dramatically.  The transient interval time jumped from 0.2 

seconds to approximately 10 sec-an increase by two orders of magnitudes.   

Second Objective-Examine Flow Field 

The second objective of this research was to examine the flow properties of the 

scaled nozzle/diffuser system.  The experimental data collected from this facility could 

then be compared to the numerical results from TRW.  This was accomplished through a 

combination of pressure readings and schlieren imaging at various locations throughout 

the diffuser. 

The pressure readings were used to map Mach numbers at different locations 

inside the diffuser.  In addition to the transducer locations recorded in the previous study, 

transducers were added near the nozzle exit plane and immediately downstream of the 

centerbody’s leading edge.  Near the nozzle exit, the flow traveled near Mach 2.7.  

However, the flow was at its highest at the leading edge of the centerbody traveling at 

approximately Mach 2.8.  After the initial oblique shock wave, flow still remained 

supersonic near Mach 1.5 around the centerbody.  Subsonic flow did not occur until the 

trailing edge of the centerbody was reached.  Pressure transducers at the trailing edge and 

the diffuser exit plane showed subsonic flows for the entire time during all test runs.  This 

indicated the diffuser must be working properly. 

The schlieren images captured during the test runs revealed even more valuable 

information.  As stated earlier, images of the oblique shock wave at the leading edge 

were captured.  This allowed for the calculation of Mach number at that point.  This was 
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then compared to the pressure analysis to confirm the readings.  The Mach numbers 

match to within 4%.  Other points of interest were the radial and horizontal expansion 

waves within the optical cavity (region between nozzles and centerbody leading edge).  

This revealed that the nozzles were underexpanded, since the flow was still expanding 

inside the optical cavity.  After the back pressure had driven the oblique shock wave 

upstream near the nozzle exit, the nozzles then became overexpanded as could be seen by 

the dark normal shock waves at the exit. 

 In viewing area 2, the upper and lower half of the initial oblique shock wave was 

present, and a second shock wave was seen near the turning radius of the centerbody 

downstream of the leading edge for both the straight and circular nozzle arrays.  This 

second shock wave revealed that the rising back pressure had a major influence on the 

flow characteristics upstream. 

 The straight nozzle array allowed visualization of the flow from a top-bottom 

angle 90 deg to that of the circular array.  The interactions between the jets confirmed 

that the flow was underexpanded at the nozzle exit.  Furthermore, the Mach numbers at 

the leading edge of the centerbody for both arrays were nearly identical during the steady 

state portion of each test run.  Since the Mach numbers near the exit plane for both nozzle 

arrays were within 10% during steady state conditions, it could be concluded that the 

flow exiting both nozzle arrays were similar. 

 Similarities were also noticed between the captured schlieren images and the 

results from TRW’s CFD analysis.  First, both revealed oblique shock waves attached to 

the leading edge of the centerbody.  Second, the streamlines interpreted in the lasing 

cavity from the schlieren images match closely to those in the CFD results.  Finally, the 
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numerical results show the flow around the midsection of the airfoil to be supersonic, 

agreeing with the experimental results.       

Although there were many similarities, there were just as many differences.  The 

Mach number at the leading edge of the CFD results was approximately 2.3, while the 

test runs resulted in a Mach number of 2.8.  Another difference in the shock wave was in 

the direction each wave bent.  The numerical shock wave bent downstream as it moved 

closer to the outer walls, while the experimental wave bent upstream towards the nozzle 

array.  These differences can be mostly attributed to the rising back pressure in the 

experimental results and discrepancies between the geometries of the subscale model and 

conceptual design. 

Recommendations 

The following is a list of prioritized improvements that can be made to the 

existing test facility to accomplish the original objectives to a fuller extent: 

1. Perform CFD analysis simulating a rising back pressure.  Also, CFD results at the 

exit plane of the straight nozzles should also obtained. 

2. Obtain schlieren through the top and bottom of the test facility with circular 

nozzles. 

3. Place total pressure probes at all static pressure transducer locations to obtain 

Mach numbers without having to iterate on temperature. 

4. Replace the pressure reducer with one that can regulate the reservoir pressure at a 

lower range. 

5. Use more pressure transducers in the optical cavity to accurately map the flow 

velocities in the entire area. 
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Appendix A: Calculation of Losses Through Non-Isentropic Nozzle (Bergren, 2002) 
 

To gain knowledge of what types of losses will occur with a non-contoured 

nozzle wall, a single nozzle was manufactured.  The nozzle built was simply a linear 

nozzle and unlike the nozzles created for the model.  It was created with no contour in the 

nozzle wall.  The expansion ratio was 1.44 and would have yielded a Mach number of 

1.8.   

 The nozzle was bolted to the wind tunnel stilling chamber with the exit open to 

the atmosphere.  A stagnation pressure of 35 psi in the stilling chamber resulted in a 

pressure ratio across the nozzle of approximately 2.5 when venting to atmosphere.  

 A schlieren picture was projected onto a white piece of cardboard.  A small metal 

wedge was placed in the flow (1 mm away from the nozzle exit plane) with a half angle 

of 7.5 degrees.  Once the flow started, an oblique shock wave was created off the leading 

edge of the wedge at an unknown angle.  The picture was sketched onto the cardboard 

while the wind tunnel was running.  The shock wave angle was measured with a 

protractor to be 53-degrees.  Knowing the relationship between the wedge half angle and 

the angle of the shock wave, the Mach number at the wedge was estimated to be Mach 

1.5.  Due to losses inside the sample nozzle, a 15% deviation from the isentropic 

expansion Mach number can be deduced.
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Appendix B: Uncertainty Analysis (Bergren, 2002) 
 

An uncertainty analysis was performed for the instrumentation used to determine the 

accuracy for a single pressure reading.  This analysis was provided by Wheeler and Ganji 

(178-182).  The following is a list of calibration errors broken down by instrumentation 

component.  The Full Scale (FS) of the transducers was 50 psia. 

Pressure Transducer: 

Nonlinearity and hysteresis = +/- 0.1% FS 

Repeatability = +/- 0.1% FS 

Thermal sensitivity shift = +/- 0.015%/0F 

Pressure Signal Conditioner: 

Gain error = +/-0.5% FS 

The calibration errors were categorized into bias and precision uncertainties.  The only 

bias error in the system due to the pressure transducer was the nonlinearity and hysteresis 

uncertainties and found to be: 

psiapsiaB 05.0)50(
100

1.0
1 ±==  

The precision error due to the pressure transducer was from the repeatability and thermal 

sensitivity shift.  To ensure the uncertainty was with a 95% confidence level, the degrees 

of freedom were assumed to be 30.  When referencing a tabulated form of the Student’s t-

distribution, t = 2.  The precision indices could be estimated: 

( ) psia
t
FSSS ityrepeatibil 025.0
)100(

)(%1.0
1 ===  
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02±= .  

The single uncertainty of the signal conditioner was a bias uncertainty.  The error was 

calculated: 

psiaFSBBgain 25.0
100

)%)(5.0(
2 =

±
==  

By combining all the bias and precision errors of the system, a total bias and precision 

error was calculated: 

( ) psiaBBBT 255.02
1

2
2

2
1 =+=  

( ) psiaSSST 0261.02
1

2
2

2
1 =+=  

Finally, the estimated uncertainty for a single pressure reading could be found: 

( ) PapsiatSBw TTT 1793261.02
1

22 ==+=  

Therefore, the uncertainty in a pressure reading was psia3.0± (2000 Pa) with 95% 

confidence level considering significant figures. 

Calculated Results: 

The maximum error in the calculations performed for mass flow and Mach number was 

investigated considering the uncertainty in pressure.  Recall the mass flow equation: 
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Taking the partial derivative with respect to the total pressure, and applying the equation 

to the nozzle throat: 
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Therefore, the max error in the mass flow calculations was determined to be: 
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The Mach number equation is: 

RTpA
RTmM
γ

•

=  

The sources of error in this equation are due to the mass flow calculation, uncertainty in 

pressure reading, and temperature fluctuations.  The temperature within the test section 

was assumed to range +/- 10 K during the run. 
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To find the maximum error in Mach number:    
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Appendix C: Calculation of Vacuum Supply Line Head Loss 
 

These calculations determined the initial pressure rise in the 73-foot long vacuum line 

when the compressed air was released through the test section.  The pressure in the 

vacuum supply line was used to determine velocity and density.  The cross-sectional area 

at this location was 0.174 m2 (270 in2). 

Calculate mass flow at the nozzle throat: 

( ) ( )1/1
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0
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•
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γγ

γ
γ
RT
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where, 

γ =1.4 

A* = 0.0011 m2 

po = 26.5 psia = 182.71 kPa 

To = 290 K 

R = 287 KJ/kgK 

M = 1 

Therefore, 48.0=
•

m  kg/s 

By using the back pressure immediately after the initial rise in pressure as is seen in 

Figure 4.2: 

p = 2.0 psia = 13.8 kPa 

Calculate average velocity in vacuum line: 

Ap
RTmV

•

=  
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smV /64.16=  

Assuming the flow was incompressible, determine the velocity in the vacuum line at the 

location immediately downstream of where the transducer was located. 

line
line A

AV
V =  

where 22 028.02.44 minAline ==  

)028.0(
)174.0)(/64.16(

2

2

m
msmVline =  

smVline /41.103=  

Determine Reynolds number to classify flow as turbulent or laminar. 

µ
ρVD

D =Re  

Using Sutherland’s Law, find µ . 

TS
bT

+
=

2
3

µ  

where, 

b=1.458E-6 and 

S=110.4 K 

µ = 1.82E-5 Ns/m2 

Calculate the density using the ideal gas law. 
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Therefore, 
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678,179Re =D  

The transition Reynolds number for pipe flow is roughly 2,000.  Therefore, the flow was 

turbulent inside the vacuum line.  Calculate the losses caused by friction: 

2

2V
D
Lfhl =  

A friction factor of 0.03 was used.  Therefore, 

2
)/41.103(

)1905.0(
)25.22()03.0(

2sm
m
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22 /735,18 smhl =  

The minor losses associated with pipe bends were determined: 

2

2
V

D
L

fh e
lm =  

where the Le/D is the equivalent length.  For the six 90 deg elbows with a radius of 1 

foot, the equivalent length used equals 25.  The two 45 deg elbows, the equivalent length 

of 12 was used (Fox, 1992). 
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Furthermore, sudden contractions and expansions were factored into the overall losses.   
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A sudden contraction occurs from the void where the transducer was located to the 

vacuum line.  The contraction ratio 164.0=
A

Aline .  An expansion exists at the end of the 

vacuum line when the fluid was dumped into the 6000-gallon cylindrical vacuum tank.  

The expansion ratio was 016.0
tan

=
k

line

A
A

.  Using Equation (14) and looking up the loss 

coefficients based on the contraction/expansion ratios (Bergren, 2002): 
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)45.09.0(
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/, +=celh  

22
/, /218,7 smh cel =  

Add all three types of losses together,  

22
, /44560 smh Tl =   

Transform head loss into a change in pressure: 

)/166.0)(/44560( 322
, mkgsmhp Tl ==∆ ρ  

psiPap 1.1397,7 ==∆  
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Appendix D: Back Pressure Analysis 
 

Using conservation of mass and the ideal gas law, the following equation relating rate of 

change in pressure to mass flow can be derived. 

Λ
=

•

mRT
dt
dp  

where the vacuum tank had a volume of 6000 gallons. 

6000=Λ  gallons = 22.71m3 

Therefore, using the mass flow found in Appendix D and assuming temperature was 

constant at room temperature, 

371.22
)/48.0)(290)(/287(

m
skgKkgKKJ

dt
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=  

sPa
dt
dp /15.1759=  

spsi
dt
dp /26.0=  
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Appendix E: Englarged Images of Oblique Shock Wave Motion in Area 1 
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Appendix F: Pressure and Mach Number Calculations at PT2 
 

The pressure and Mach number behind an oblique shock wave can be found using the 

θ−β-M relation described in Chapter 3.  Below is a drawing of the radial flow exiting the 

nozzle array. 

θwedge

β

α

PT2

Radius Center
For Nozzle Array

Flow

Nozzle Array
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For the flow approaching PT2 during the steady state period, 

α = 5 deg 

θwedge = 21 deg 

β =  40 deg 

Since the flow is at a 5 degree angle relative to the centerline, the turning angle becomes 

deg16=−= αθθ wedge  

Using plots derived from the θ−β-M relation, M = 2.35 

The next step is to determine the velocity component normal to the oblique shock wave. 

βsin11
MM n =  Therefore, 

51.140sin*35.2
1

==nM  
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Then, normal shock properties can be used to find both the pressure and the normal 

component of the velocity behind the shock wave.   

Calculate pressure behind the shock 

( ) 1
2

2 1
1

21
1

pMp n −
+

+=
γ

γ  

where p1 = 2.6 kPa during the steady state period (measured from PT1). 

( ) kPap 5.66.2151.1
1

21 2
2 =⋅−

+
+=

γ
γ  

To find the normal component of the velocity behind the shock, use ref (Kuethe, Chow, 

1998) 

7.0
2

=nM  

Calculate the total velocity behind the shock wave 

65.1
)1540sin(

7.0
)sin(

2
2 =

−
=

−
=

θβ
nM

M  

These calculations can be used at any location along the oblique shock wave shown in 

Figure 4.19.  As the location moves up along the shock wave, α increases, which causes 

the turning angle, θ, to decrease.  Once the shock wave angle, β, is measured, the 

upstream Mach number can be found in tabulated tables.   
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Appendix G: Enlarged Images of Oblique Shock Wave Motion in Area 2 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

t = 0.1st = 0.1s

t = 5.0st = 5.0s
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t = 6.2st = 6.2s

t = 10.25st = 10.25s
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Appendix H: Enlarged Images Straight Nozzle Flow in Area 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

t = 0.1 st = 0.1 s

t = 5.0 st = 5.0 s
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t = 7.0 st = 7.0 s

t = 11.0 st = 11.0 s
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Appendix I: Enlarged Images Straight Nozzle Flow in Area 2 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

t = 0.1 st = 0.1 s

t = 5.0 st = 5.0 s
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t = 7.0 st = 7.0 s

t = 11.0 st = 11.0 s
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